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Bulk-heterojunction  polymer  solar  cells  (PSCs)  as  a  clean
and  renewable  energy  resource  have  attracted  great  atten-
tion  from  both  academia  and  industry[1−20].  Recently  non-
fullerene PSCs based on polymer donors (PDs) and small  mo-
lecule  acceptors  (SMAs)  have  achieved  remarkable  success
with the power conversion efficiencies  (PCEs)  over  18%[21−26].
Among  various  PSCs,  all-polymer  solar  cells  (all-PSCs)  consist
of  PDs  and  polymer  acceptors  (PAs),  showing  unique  merits
including  superior  stability  and  mechanical  robustness.  How-
ever,  the  development  of  all-PSCs  lag  behind  SMAs-based
PSCs due to the scarcity of high-performance PAs[6].

The first all-PSCs can be traced back to 1995[27]. However,
only  ten  years  later,  aromatic-imide-based  PAs  got  achieve-
ments  in  all-PSCs.  After  the  first  report  of  perylene  diimide
(PDI)  PA  named  PDI-DTT[28] by  Zhan et  al.  in  2007  (Fig.  1,
Table  1),  PDI  and  naphthalene  diimide  (NDI)  derivatives
began  to  dominate  PAs.  Among  them,  a  NDI-based  copoly-
mer  PNDIOD-T2  (a.k.a.  N2200)  opened  a  new  era  for  PAs  re-
search[29, 30].  With  tailored  PDs  and  device  engineering[5, 31],
steady  progress  has  been  achieved  in  all-PSCs  based  on
N2200  and  its  derivatives.  A  PCE  of  11.76%  was  realized  in
2020[32].  However,  a  major  drawback  for  PDI  and  NDI  PAs  is
their  low  absorption  coefficient  in  the  NIR  region  due  to  the
steric-hindrance-induced  large  torsion  angles  between
NDI/PDI  core  and  co-units,  thus  limiting  the  short-circuit  cur-
rent  density  (Jsc)[33, 34].  Moreover,  their  low  LUMO  energy
levels led to relatively low open-circuit voltage (Voc). Other elec-
tron-deficient  building blocks like diketopyrrolopyrrole (DPP),
isoindigo  (IID),  bithiophene  imide  (BTI),  thieno[3,4-c]pyrrole-
4,6-dione  (TPD)  and  B←N  bridged  bipyridine  (BNBP)  unit
were  also  explored  for  PAs[35].  BTI  derivative  SPA2  and  BNBP
derivative  PBN-12  were  the  representatives,  affording  9.21%
and  10.07%  PCEs  with  >1  V Voc in  all-PSCs,  respectively[36, 37].
However,  these  acceptors  suffer  from  the  same  defects  as
NDI  and  PDI  PAs.  Specifically,  SPA2  and  PBN-12  show  weak
light-harvesting  capability  with  absorption  onsets  below
700  nm.  In  this  regard,  Guo et  al.  developed  a  strong  elec-
tron-withdrawing  building  block  5,6-dicyano-2,1,3-benzothi-
adiazole  (DCNBT)[38, 39].  PAs  based  on  DCNBT  show  narrow
bandgap  (1.28  eV)  with  high  absorption  coefficient  in  the
NIR region.  A PCE of  12.1% was achieved in a  recent work[38].
Higher  efficiencies  from  DCNBT-based  PAs  are  anticipated

through further morphology and device optimization.
In  2017,  the  strategy  of  “polymerizing  SMAs”  was  pro-

posed  by  Zhang et  al.[40] SMAs  were  introduced  as  electron-
deficient  building  blocks  to  construct  new-generation  PAs.
These  polymerized  SMAs  (PSMAs)  not  only  inherit  the  merits
like  narrow  bandgap,  strong  absorption  and  tunable  energy
levels from SMAs, but also present good film-forming capabil-
ity  and  photostability  of  the  polymers[41].  The  first  PSMA
named  PZ1  was  synthesized  by  copolymerizing  IDIC-C16
with  thiophene  unit,  showing  a  high  extinction  coefficient
(>105 cm−1)  and  yielding  a  PCE  of  9.19%  in  all-PSCs[40].  After-
wards,  a  wide  variety  of  SMAs  and  different  conjugated  link-
age  units  were  selected  to  tune  the  physicochemical  and
photovoltaic  properties  of  PSMAs.  A  few  high-performance
PSMAs were designed and synthesized by several groups, en-
abling  all-PSCs  with  PCEs  over  14%  (Fig.  1)[42].  Notably,  the
widely  used  end  groups  in  SMAs  are  a  mixture  of  two  iso-
mers  with  similar  polarity,  thus  resulting  in  isomeric  issues  in
PSMAs. This brings a negative effect to the batch-to-batch re-
producibility  of  the  PSMAs,  leading  to  a  large  deviation  in
device  performance.  Luo et  al.[43] reported  a  regioregular
PSMA  named  PY-IT  by  using  isomerically  pure  end  groups,
which enabled the PCE of all-PSCs exceeding 15% for the first
time,  significantly  higher  than  its  regiorandom  counterparts.
The  higher  performance  resulted  from  enhanced  absorption,
more  balanced  charge  transport  and  favorable  morphology.
Fu et  al.[44] synthesized  a  new  regioregular  PSMA  PZT-γ by
replacing  the  benzothiadiazole  moiety  with  benzotriazole.
The PZT-γ-based all-PSCs exhibited a high PCE of 15.8%. To im-
prove  the  electron  mobility  of  PAs,  Guo et  al.[45] combined
“polymerizing  SMAs”  and  “acceptor–acceptor”  (A–A)  stra-
tegies to develop a new PSMA L14 by copolymerizing the dis-
tannylated  BTI  with  a  brominated  SMA.  The  A–A  type  back-
bone  renders  L14  an  enhanced  electron  mobility.  L14
achieved  an  efficiency  of  14.3%,  which  is  a  record  value  for
all-PSCs  based  on  A–A  type  PAs.  The  success  of  PSMA-based
binary  all-PSCs  triggered  the  further  exploration  of  efficient
ternary  all-PSCs.  An impressive work is  the incorporation of  a
B←N-based  PA  into  PM6:PY-IT  host  blend  by  Liu et  al.[46].  A
PCE  of  16.09%  was  achieved  due  to  an  optimal  morphology
and reduced nonradiative energy loss in ternary cells. Very re-
cently,  Min et  al.  reported a 17.2% efficiency from ternary all-
PSCs with two well-compatible PSMAs[47].

Overall,  remarkable  progress  has  been  made  in  all-PSCs
in  terms  of  materials  diversity  and  device  performance.  Over
17%  PCEs  have  been  demonstrated.  In  addition,  the  energy
losses  in  the  devices  can  reach  0.5  eV  or  less,  indicating  that
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Table 1.   Performance data for the polymer acceptors.

Acceptor Donor Voc (V) Jsc (mA/cm2) FF (%) PCEmax (%) Ref.

PDI-DTT PTA 0.63 4.2 39.0 1.5 [28]
N2200 PTzBI-Si 0.88 17.62 75.78 11.76 [32]
SPA2 PTB7-Th 1.02 15.16 59.4 9.21 [36]
PBN-12 CD1 1.17 13.39 64.0 10.07 [37]
DCNBT-TPC PTB7-Th:PBDB-T 0.81 21.9 68.3 12.1 [38]
PZ1 PBDB-T 0.83 16.05 68.99 9.19 [40]
L14 PM6 0.96 20.6 72.1 14.3 [45]
PY-IT PM6 0.933 22.30 72.3 15.05 [43]
PZT-γ PBDB-T 0.896 24.7 71.3 15.8 [44]
PYT:BN-T PM6 0.955 22.65 74.3 16.09 [46]
PY2F-T:PYT PM6 0.90 25.2 76.0 17.2 [47]

 

 

Fig. 1. High-performance polymer acceptors. (Note: the names in the parentheses indicate the polymer donors.)
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the theoretical limit is comparable to that of SMA-based cells.
It should be noted that all-polymer blend films typically show
poor  nanoscale  phase  separation  due  to  the  long  and  inter-
twined polymer chains,  thus leading to low FFs.  Hence,  more
efforts  in  developing  narrow  bandgap  PAs  with  high  electr-
on mobility and optimizing film morphology should be made.
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